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INTRODUCTION

As semiconductor technology continues to pursue the scaling-down of
IC device dimensions into the submicron (less than ten thousand Angstroms)

, regime, many novel and interesting questions will emerge concerning the
physics of charged particles in semiconductors. One of the more important
topics to be considered is that of the appropriate transport (1) picture
to be used for a given spatial and temporal regime. Moreover, from the
point of view of device physics, it is most desirable to have a microscopic
description of semiconductor transport which is computationally manageable
or at least amenable to phenomenological treatment so that its properties
can be meaningfully incorporated into device simulations. In this paper
attention is focused on a useful transport methodology for the ultra-
submicron regime. At present, military electronic devices with transit
lengths in the ultra-submicron region are coming to fruition due to the
advent of MBE (2) processing so that the need for an appropriate descrip-
tion of transport in this regime is indeed imperative.

Semiconductor transport in the ultra-submicron regime approaches the
.category of quantum transport. This is suggested by the fact that within
the effective mass approximation the thermal deBroglie wavelength for
electrons in semiconductors (see Fig. 1) is of the order of ultra-
submicron dimensions. Whereas classical transport physics is based on the
concept of a probabIlity distribution function which is defined over the
phase space of the system, in the quantum formulation of transport physics,
the concept of a phase space distribution function is not possible
inasmuch as the non-commutation of the position and momentum operators
(the Heisenberg uncertainty principle) precludes the precise specification
of a point in phase space. However, within the matrix formulation of

6 quantum mechanics, it is possible to construct a "probability" density
matrix which is often interpreted as the analog of the classical distri-
bution function.
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There is yet another approach to the fomlto qfuantm~ P~

based on the concept of the Wigner distribution function (WDF) (3). This

formalism is particularly attractive for use in ultra-submicron device

transport in that it contains all of the quantum mechanical information

about the state of the system yet has elements of the classical picture

implicitly built in. Thus, the intent of this study is to explore the

potential usefulness of the WDF as well as other possible quantum distri- 1

bution functions for describing quantum (ultra-submicron) device transport

in semiconductors. To this end we first review the salient features of

the WDF and then discuss a new result, the derivation of the first three

quantum moment equations using the WDF. It is shown that the moment equa-l, tions contain quantum corrections to the classical moment equations; these
quantum terms are non-negligible when the transit lengths are of the order

of the carrier deBroglie wavelength.

THE WIGNER DISTRIBUTION FUNCTION

The Wigner distribution function (3) is generally defined in terms of

all the generalized coordinates and momenta of the system as

y1
p(xl..x Pi....p) T 1 f dy ..dy s + x
W n 2,,)

(7)

+ Li- 0O e(PlYi++Pnyn)!
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Howeer, or. implcity i tispaper,_we discuss_ the properties ofa

single coordinate and momentum WDF:

P(xP) dy ' (x + X) ( - 2 eiP/ (2):

-where Y(x) represenk@ts p estate of the systiem in the coordinate represents-.
tion. Although we will be treating the WDF for the special case of pure
states, the adaptation of this formalism to include mixed states is accom-

~plished through the generalization -- -

nWXP L P y * (x ) If (xe
Pw(~p =E 27IM~ dTn~( 2 n2

wvhere__ns the _rbailtyobe in state "n". (For example, for a system

in -contact --ith-a-heat- -be -bat-onta#.-temperature, P e
The distribution function of Eq. (2) has interest~ng properties in

that the integration of this function over all momenta leads to the proba-
* bility density in real space; conversely, the integration of this function
over all coordinates leads to the probability density in momentum space.
In mathematical terms,

f PW(x,p) dp T ' (x)'F(x) (3a)

and

f PW~(x,p) dx: *(p)f*(p), (3b)

where

-~p (2tiPx fe "t '(x)dx.

It follows imuediately from Eq. (3) that, for an observable W(x,p)
which is either a function of momentum operator alone or of position
operator alone, or any additive combination therein, the expectation value
'of the observable is given by

(W>. If ~WP(X.P) dx dp, (4)

which is analogous to the classical expression for the average value.

Herein lies the interesting Aspect of the Wigner distribution function; thi

t~
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result of Eq. (4) suggests -that -it is possible to tran sfer many of ther--

sults of classical transport theory into quantum transport theory bysimpl
replacing the classical distribution function by the Wigner distribution
function. However, unlike the density matrix, the Wigner distribution
function itself cannot be viewed as the quantum analog of the classical
distribution function since it is generally not positive definite and non-
unique [PW(x,p) of Eq. (2) is not the only bilinear expression (3-5) in T
that satisfies Eq. -(3) ... ... .. .. . . .. . .. .

Further resemblance of'the Wigner distribution function to the classi-
cal distribution function is apparent by examining the equation of time
evolution for PW(x,p). Uponassumingthat'*(x) in Eq. (2 satisfies the
Schrodinger equation for a system with hiil nian H = pl/2m + V(x), it can!
be readily shown that Pw(x,p)-saiisffes*-the equation

- - --.. .. ... . - - (p/.. .-P .-~--

where

2 2n+l 2n+ a 2n+P(xP)
e.P 2 =- (1 n (?k/ 2) a VWx ______

n" -) n (2n + 1)! ax2n+l 2n+l (6)n=0 ax p

It is evident that in the limit T - 0, 0 .PW in Eq. (6) becomes

e P -(aV/3x) ( /3p) (7)

:so that Eq. (5) reduces to the classical collisionless Boltzman equation.

The Wigner distribution function defined in Eq. (2) is derivable (8)
from the Fourier inversion of the .expectation value (with respect to state

-(x))of the operator ei(rp'X)(here,[x and ]satisfy the commutation
relation 0,] - it). As such,

Pw(x,p) f 1 ff C(.r,e)e-i(Tp+ex)dT dO, (8a)

',where

C.,,(T,O) V*(x)eI~p8 7 Wx dz, (8b)

'and the interval of integration is (-W,-) unless otherwise specified. In
order to show that the right-hand side of Eq. (a) is indeed the WIgner
distribution function as defined in Eq. (2), note, from the Baker-Hausdorff

. ... . .... . .... ... r

. .. . .... . ... . . . . .. . . .... .. ..
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theorem (9)-; that eiTx can be written -. . .

ei(T +0 ) eiT/2i8X^eiTp4/2(9

in which case CW,(90) of Eq. (8b) becomes

iTP/2A -oiTP/2
CW(T,e) =f [er~~ 'P (x) elX [T Y(x) dx (10)

whi.ch further reduces to

7 iex
CW(Tse) - ' (X - rh) e 'k(X + 9T h) dx..(1

Then, by inserting CW,(T,e) of Eq. (11) into the right-hand side of Eq. (8a),!
integrating over the variable e by using the relation

fei('" dO - 2w4S(x'-x"),

and letting T y/ft, the desired result is obtained.
The method outlined above to arrive at the Wigner distribution func-

tion is based on the notion of a characteristic function. T~e character-
istic function of an observable, A, with respect to state IT) (here, the
Dirac notation is utilized for purposes of generality) is defined as

CA(C) - (TPieiIY) . (12)

where tis a real parameter. Assuming A to possess an eigenvalue spectrum
given by A1A) - AVIA'), CA(C) can be evaluated in the A'-representation as

CA(Q) - f dA' f dA!" <VItA') (Ale iCA IAt> (A"l'P> .(13)

Since (AIle"AIAII) eiA'6(AI A") in the A'-representation, CA"~) 'i
Eq. (13) reduces to

CA(~() -fdA9.iaIAI (14)

where IT 11 2 !(A: IT>!2 3P(A'), the probability distribution function o
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'measuring A' while in statej'y)." Hence, the characteri~stic function for
A is the Fourier transform of the probability distribution function P(A').

*Subsequent inversion of Eq. (14) above leads to

P(A') = ' 2f C(C0 e1iA dC.. (15)

The Wigner distribution function was derived by taking the Fourier

transform of the characteristic function for ei(p+O) In view of the
connection between the proqbabilityd-is-tribution -funct ion and the character-'
istic function for a given observable. this approach seems to be a natural
way of obtaining a distribution function for momentum and position. Unf or-;!
tunately, the noncommutative nature of the two observables destroys the

;' convenient probability interpretation of the characteristic function
imlicit in E. (15.96 _

'M In or der to demonstrate this Roint,,assume the characteristic function'i
for two noncommuting observables, A and B, to be

Observables iand B4 are assumed to have eigenvalue spectra

^A-= 'A),^BB, - B'IB'>.(1)

and are chosen so that [1, [A^BA]- If, [i^,B]J 0.
,This assumption is imposed so that the identity

Wi i+~B) . UIlA ei-B e 2 AB]/2 (8

may be used.
* Inserting Eq. (18) into Eq. (16) while obtaining the matrix elements

'of e i~lA in the A-representation and e C2 BIn the B-representation results
in

CAB(142 e C14 2 AB 1/2'f dA' f dB' ei(91 A'+& 2B') (7lA(AIB>B' 7> (19)

1In Eq. (19), it is assumed that 1A,B] is a c-number independent of the
eigenvalues A' and B'. We define F(A',B'), the generalized Wigner distri-
bution function, to be

-----------------------------
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_<F(A',')= IA'.(AI.'.(.'I , .... ... ) (20)

so that

F(A',B') 2 fdE 1 fdE2 eE1E2 [ AB ]/ 2 CAB( QE2 )e-i( 1 A'+E2 B' ) .  (21)
(20~

...... - eeident from Eqs. (20,21) that

f F(A',B') dA' d-(t''>2  .j Sd 2.-CAB(OE 2 )e 2B (22a)j"W

and

.... ( )'d CAB(El,0)e 1A. (22b)

Thus, Eq. (21) establishes the relationship between the characteristic
function for two arbitrary noncommuting observables and the generalized
iWigner distribution function. The generalized distribution function has
the essential properties of the conventional Wigner function in that an
integration of the generalized function over the eigenvalue spectrum of one
observable leads to the probability density in the canonically conjugate
observable [Eq. (22)).

There is no simple probability interpretation of F(A',Bl) in Eqs. (209:
21) because of the necessary overlap between the states of the noncommuting
observables. However, if A and B are made to commute so that IA'> and IB'>
are a common set of eigenvectors then F(A',B') reduces to the probability
distribution function for A and A.

Finally, it is ngted that the conventional Wigner distribution func-
tion for observables A and B is obtained from

Pw(A',B') - (2)2 fdt 1 fd& 2 CAB(IE 2)e-i( 1A+2B), (23)1

-with CAB(9192) defined in Eq. (16), whereas the alternative distribution
function, F(A',B'), introduced in Eqs. (20,21) differs from the Wigner

function due to the presence of the phase factor egl&2[1 ' 1/2 in the inte-
grand of Eq. (21). For A - x and B - p, [W(x,p) in Eq. (23) reduces to the
Wigner function of Eq. (2), whereas F(x,p) defined from Eq. (20) becomes

11 ipy/lI -F(xp) = dy (x)Y(x -y)e (2, ) - /2 (x)eipx/ (p), (24)

= -. : - - . . . . . . . ., . . . . .• . , - _ .. ,. .: . .•. : - - ,, . .. . .. .. .- ..m11f 
"
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where *(p) is defined in Eq. (3b).. It is evident-that there is-a'family "

of functions which are bilinear in T yet satisfy the-sum-rules of.
Eqs. (3a,b).

There are some interesting questions to be resolved concerning the
uniqueness and positive definiteness of Wigner-type quantum distribution
functions. Nevertheless, these distribution functions serve a useful pur-
pose for calculating quantum mechanical observables in transport (7)
studies and numerous solid-state (10,l)probl-ems....

SMOMENT EQUATIONS

In this section, we der-ive-the ffrs--thre-e-moments of a "Wigner-
Boltzmann"-like transport equation,

t P

coll.

'This equation was constructed to include an ad-hoc collision term which may
not necessarily express the same phenomenology as that of the classical
Boltzmann transport equation, since Pw is not a true probability distritu-
tion function. These problems are conceptually reduced when dealing with
moments in a relaxation approximation. The moment equations are obtained
by multiplying Eq. (25) by an appropriate function of momentum, 0(p), and
then integrating over all momenta to obtain:

a<g> +1 a 0
at m ax

11 1 a82n+1 a2n+l atw
2i (-n ( ) V(x) f 0(p) PwdP- <0( ) > (26)

SI (2n+l) xn+l 2n+lwatn=O at ol~Coll.

where < > refers to an integration over momentum. In making the assump-
tions that 0(p) be an analytic function of momentum and that Pw(x,p) vanish
at the momentum limits, it follows that

f 0(p) 2n+l P(_)2f+l f( 32n+1 ,(p)) Pwdp (27)

ap2n+l ( ap2n+l
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and that Eq. (26) becomes

+ 1 opat m ax

2n a2n+l 3
2n +l 0  apw

+ 2n 1)' V(x)) < >< ( > (28)+ 21l (2n+l) at
n=O ........- .......ax2n+1 . . . . . . . . .. . coil.

2

For specific values of O(p) p, p, and jm, Eq. (28) becomes

at + t (29a)

a<p> 1 vaPw
a M axax -<P........... <P-> _ _p2>. I>- - --<p. Coll.

a<> + 1 ax <p3> + < > aV < p2 (-atw) > (29c)
TM 2m- a xZ < -m ax 2m atcol.

where upon reduction
n n n! a (x) )n-J 1(x) (0

pn>= 21 ax l ja!j. axj  axnj

n n
thereby showing the dependence of <p >. For n 0, 1, 2, 3 we show <pn>
explic ily:

<pO> = T* T <pl>= (,F* -,- ),(31a)<> 2 1  ax ax (1)

2 ,f* 2 *

<p2> () 3 - (31b)

3 ,
p3>= 3y a(* - * a2  +  a" a T v "

Note that use of Eqs. (31a) in Eq. (29a) results in the correct quantum

mechanical continuity equation.

I I -'
"
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In order to see the transition between the quantum and classical
regimes, ve invoke a wavefunction of the form T(xlt = A iS(x,t)t ..

:and so

A2(xt) y* p(xt) 1 aS (x~t) = v(x,t) (32)
A2 - ax Yt (32xt m)

where p(x,t) is the probability density and v(x,t) is the ensemble veloc-

:ity. Inserting the wavefunction of Eq. (32) into Eq. (31) results in

<pO>= p(xt>. ,----<_p_> mvp (33a)

=P p 32. (33c)-

-h a)2 a)2

<p3> =(mv) 3 p p 3mv -- np +-WX 2 (my)} (33c)

It is evident from Eq. (33) that the terms possessing an explicit

idependence on "1" are the quantum corrections to the classical momentum-

:density moments. Furthermore, insertion of these momentum-moments into

6i Eqs. (29) results in a set of moment equations which contain explicit
quantum corrections as well. Of course, as r-O, these moment equations
reduce to the classical, zero temperature, moment equations.

The logarithmic derivative term appearing in Eqs. (33) is not uncom-
mon; such a term appears in the real part of the Schrodinger equation when
the wavefunction associated with Eq. (32) is used (9). In the limit where
.this term is negligible, the Schrodinger equation goes over to the
Hamilton-Jacobi equation.

We have made order of magnitude estimates of the strengths of the
quantum correction term appearing in Eq. (33). Using a Gaussian spatial
variation for p(x), and a thermal ensemble value for my

2 , typical of
central valley GaAs electrons, we find that the quantum correction is sub-
*stantial for distances of the order of 100°A.

SUMMARY

In his paper weLIav putforth a formalism for treating ultra-

submicro device transport. The formalism results in a useful and
attractive methodology for describing'uantudevice transport in that
the theory is derived from a fully quantum mechanical representation, yet
implicitly contains elements of the semiclassical semiconductor transport
picture.. The baslc _three semiconductor._quantum transport equations were

-/0-
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*derived using the Wigner distribution function. These tinsport equations

were shown to contain explicit quantum corrections; thesez\quantum correc-
tions are non-negligible when the transit lengths of the semiconductor

device are of the order of the carrier deBroglie wavelength. Since the
carrier deBroglie wavelength for carriers is of the order of hundreds of

angstroms in III-V device materials of interest to the Army, the quantum

description of transport as described here will play a vital role in

preticting the electrical behavior of present and fu.ture generaIion ultra-
submicron devices. %

In future studies, -pn to-expand-r theoretical effort-to

include device modeling of Submicron and ultra-submicron semiconductor
devices such as P-N junctions, planardopedbarriers, and one- and two-
dimensional superlattices; for these devices, it is clear that quantum
transport will indeed be necessary to explain their semiconductor transport

characteristics.

The author wishes to thank Kathleen Lape' for editing and typing

this manuscript.
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